New Class of K-G-Type Symmetric Second Order Vector Optimization Problem
نویسندگان
چکیده
In this paper, we present meanings of K-Gf-bonvexity/K-Gf-pseudobonvexity and their generalization between the above-notice functions. We also construct various concrete non-trivial examples for existing these types formulate K-Gf-Wolfe type multiobjective second-order symmetric duality model with cone objective as well constraints theorems have been established under aforesaid conditions. Further, validates weak theorem those assumptions. Our results are more generalized than previous known in literature.
منابع مشابه
solution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
On second – order conditions in vector optimization
Starting from second-order conditions for C scalar unconstrained optimization problems described in terms of the second-order Dini directional derivative, we pose the problem, whether similar conditions for C vector optimization problems can be derived. We define second-order Dini directional derivatives for vector functions and apply them to formulate such conditions as a Conjecture. The proof...
متن کاملThe Algebra of K-invariant Vector Fields on a Symmetric Space G/k
When G is a complex reductive algebraic group and G/K is a reductive symmetric space, the decomposition of C[G/K] as a K-module was obtained (in a non-constructive way) by Richardson, generalizing the celebrated result of Kostant-Rallis for the linearized problem (the harmonic decomposition of the isotropy representation). To obtain a constructive version of Richardson’s results, this paper stu...
متن کاملOn the Algebra of K-invariant Vector Fields on a Symmetric Space G/k
When G is a complex reductive algebraic group and G/K is a reductive symmetric space, the decomposition of C[G/K] as a K-module was obtained (in a non-constructive way) by R. Richardson, generalizing the celebrated result of Kostant-Rallis for the linearized problem (the harmonic decomposition of the isotropy representation). To obtain a constructive version of Richardson’s results, this paper ...
متن کاملSecond-order optimality and duality in vector optimization over cones
In this paper, we introduce the notion of a second-order coneconvex function involving second-order directional derivative. Also, second-order cone-pseudoconvex, second-order cone-quasiconvex and other related functions are defined. Second-order optimality and Mond-Weir type duality results are derived for a vector optimization problem over cones using the introduced classes of functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2023
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms12060571